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RESEARCH MEMORANDUM 

PERFORMANCE OF A SHORT TURBOJET COMBUSTOR WITH HYDROGEN 

I FUEL I N  A QIJARTER-ANNULUS DUCT AND COMPARISON 

WITH PERFORMANCE Dl A FULL-SCALE ENGINE * 
By Robert Friedman, C a r l  T. Norgren, and Robert E. Jones 

I SUMMARY 

A number of short  tu rboje t  combustor configurations f o r  hydrogen f u e l  

The bes t  combustor l i n e r  consisted of an annular primary zone and 
were designed and t h e i r  performance investigated i n  a quarter-annulus 
duct. 
a secondary zone composed of T-shaped channels sloping from the  primary 
zone t o  t h e  combustor w a l l .  The f u e l  manifold consisted of two concen- 
t r i c  spray ba r s  within a V-gutter flameholder with separate f u e l  connec- 
t i o n s  t o  e i t h e r  spray bar f o r  cont ro l  of the i n i t i a l  f u e l  d i s t r ibu t ion .  
The dis tance from the  f u e l  i n j ec to r s  t o  t h e  instrumentation plane vas 19.4 
inches. 

The quarter-annulus combustor operated at combustion e f f i c i enc ie s  of 
84 percent or  grea te r  at combustor-inlet t o t a l  pressures as low as 5.7 
inches of mercury absolute. Combustor reference veloci ty  had l i t t l e  ef- 
f e c t  on combustion efficiency even a t  ve loc i t ies  as high as 270 f e e t  per 
second. A t  a reference veloci ty  of 80 f e e t  per second, combustor t o t a l -  
pressure l o s s  ranged from 3.0 percent of combustor-inlet t o t a l  pressure 
a t  isothermal conditions t o  4.7 percent at a combustor total-temperature 
r a t i o  of 3.6. 

The quarter-annulus combustor f o r  hydrogen f u e l  w a s  a l so  scaled t o  
f i t  a production-type, fu l l - sca le  engine. 
t h i r d s  the length of the standard combustor f o r  t h i s  engine. 
eff ic iency and total-pressure loss  of t he  full-annulus combustor were ap- 
proximately t h e  same as those determined i n  t h e  quarter-annulus duct. 
Desirable outlet-temperature p r o f i l e s  were obtained by cont ro l l ing  t h e  
f u e l  d i s t r i b u t i o n  t o  separate manifolds of a dual f u e l  manifold. 

This combustor was about two- 
Combustion 

INTRODUCTION 

Hydrogen f u e l  o f f e r s  advantages f o r  the airplane i n  that (1) t h e  high 
heat re lease  per pound of t h i s  f u e l  can greatly increase the operat ional  
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range of jet-powered a i r c r a f t  (refs. 1 and Z ) ,  and (2) at  the  high s tag-  
nation temperatures associated with high f l i g h t  speeds, t h e  high beak 
capacity of t h i s  f u e l  furnishes a la rge  heat s ink  f o r  cooling port ions 
of t h e  engines and airframe, espec ia l ly  when the  f u e l  is  ca r r i ed  as a 
l i q u i d  ( re f .  3). To obtain the  gains i n  f l i g h t  range t h a t  are possible 
with hydrogen, it i s  necessary t o  f l y  a t  higher a l t i t u d e s  than with con- 
ventional f u e l s  (ref. 4 ) .  High-altitude f l i g h t  requi res  a light-weight, 
high-thrust powerplant with a combustor capable of operating at low pres- 
sures.  Fortunately, t h e  high flame speed and wide inflammability l i m i t s  
of hydrogen permit e f f i c i e n t  burning a t  very low pressures ( re fs .  3 and 
5).  These favorable combustion c h a r a c t e r i s t i c s  of hydrogen may also al- 
low a decrease i n  burner length and consequently a decrease i n  engine 
weight. 

Improvements i n  combustor performance through t h e  use of hydrogen 
have already been demonstrated i n  current  production-type combustors 
(refs.  6 and 7 ) .  
combustors designed spec i f i ca l ly  f o r  hydrogen. The requirements f o r  such 
combustors and a proposed design of an engine f o r  hydrogen f u e l  were pre- 
sented i n  a recent  NACA conference ( r e f .  4 ) .  
shorter  than standard combustors and uses a simple low-pressure-drop 
l i n e r ,  since a grea te r  tolerance i n  t h e  means of introduction of f u e l  
and air  is  possible  than with hydrocarbon f u e l  combustors. 

The f u l l e s t  advantages, however, would be r e a l i z e d  i n  

The proposed combustor i s  

The object ive of t h e  research program described here in  w a s  t o  demon- 
strate some design p r inc ip l e s  f o r  a short-length, hydrogen-burning com- 
bustor .  Subsequent evaluation i n  a f u l l - s c a l e ,  production-type engine w a s  
conducted at t h e  NACA Lewis laboratory.  Although a sa t i s f ac to ry  design 
was found i n  t h e  l imi ted  t i m e  ava i lab le  f o r  t h e  invest igat ion,  t h i s  con- 
f igura t ion  does not necessar i ly  represent the bes t  design t h a t  can be 
reached through more exhaustive t e s t s  of individual  components of the 
combustor. 
the length o f  the combustor cur ren t ly  used in  the f u l l - s c a l e  en,zine. The 
combustor w a l l s  were constructed of s loping,  channel-shaped pieces t o  
permit adequate mixinc of p imary  combustion products and secondary a i r  
i n  a sho r t  len,th without undue to ta l -pressure  loss ( r e f .  8 ) .  
the  use of channels promises t o  be one of t he  more e f f ec t ive  methods of 
increasing combustor l i f e  a t  supersonic f l i g h t  condi t ions.  Various f u e l -  
in jec tor  designs were invest igated,  a l l  of which consisted of simple, 
concentric spray bars. 

The hydrogen-burning combustor w a s  approximately two-thirds 

In  addi t ion ,  

A one-quarter sec tor  of t h e  annular combustor w a s  operated at both 
low pressures and pressures above atmospheric. Combustion e f f ic iency  and 
to ta l -pressure  drop were determined over a range of ve loc i t i e s ,  with par- 
t i c u l a r  emphasis on conditions at l o w  t o t a l  pressures. Provisions w e r e  
made t o  vary t h e  outlet-total-temperature p ro f i l e ,  and examples showing 
t h e  cont ro l  of t h e  p r o f i l e  a-e described i n  t h i s  repor t .  
t h e  performance of t h e  quarter-annulus model with t h a t  of the  f u l l - s c a l e  
hydrogen-fuel combustor i s  a l so  shown. 

A comparison of 
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Combustor I n s t a l l a t i o n  

A schematic diagram of t h e  combustor i n s t a l l a t i o n  i s  shown i n  f i g -  
ure 1. 
oratory air-supply system, metered with a sharp-edged o r i f  ice, passed 
through t h e  combustor, and exhausted in to  t h e  a l t i tude exhaust sytem. 
A d i r ec t - f i r ed  preheater i n  the  i n l e t  plenum chamber w a s  used t o  increase 
the  combustor-inlet temperature f o r  a few of the  tes t  runs. 

A i r  of t he  desired quantity and pressure was  drawn from the  lab- 

Fuel-System Ins t a l l a t ion  

A schematic diagram of t h e  hydrogen-fuel system i s  shown i n  figure 
2. The f u e l  w a s  commercial hydrogen with a pur i ty  of about 98 percent. 
It w a s  supplied i n  compressed-gas trailers consis t ing of banks of 22 t o  
37 gas cyl inders  loaded t o  a pressure of 2400 pounds per square inch. 
Each cylinder held about 1200 cubic feet, or  6.8 pounds, of hydrogen (at 
standard condi t ions) .  One o r  more cylinders w e r e  connected by manifolds 
as necessary. The desired quantity of f u e l  w a s  taken from the  cylinders,  
reduced t o  a working pressure of 50 t o  150 pounds per square inch gage, 
metered with a sharp-edged o r i f i c e ,  and then in jec ted  i n t o  the combustor 
through a single- o r  dual-entry fue l  manifold. 

Safety precautions included use of an over-pressure relief valve set 
a t  200 pounds per square inch, room and roof vents, and i so l a t ion  of t he  
operators '  cont ro l  room from a l l  components of t h e  fue l  system. 

Combust o r  

The combustor consis ted of a one-quarter sec tor  of an annular com- 
bustor  designed t o  f i t  i n to  a housing with an outs ide diameter of 25.5 
inches and an  inside diameter of 10.8 inches. The dis tance from the  f u e l  
i n j ec to r  t o  t h e  exhaust instrumentation plane w a s  approximtely 19.4 
inches, 25 percent shor te r  than previous experimental combustors t h a t  f i t  
t he  same housing (ref. 8).  The m a x i m u m  combustor cross-sect ional  area of 
t he  quarter  sec tor  was 105 square inches (420 s q  in .  f o r  t h e  complete 
combustor). 

A three-quarter-cutaway view of t h e  f i n a l  combustor model i s  shown 
i n  figure 3, and a longi tudinal  cross-sect ional  view i n  figure 4. 
f o r  a. minor modification i n  the  secondary zone, a l l  t h e  configurations 
used t h e  same combustor l i n e r .  The combustor consis ted of an annular 
primary zone with a row of 5/8-inch-diameter holes  i n  the  inner w a l l  only, 
a secondary zone composed of sloping channel-shaped pieces,  and a heat 
sh i e ld  loca ted  near t he  tu rb ine - in l e t  section. These channels were each 
connected by perpendicular s t r u t s  t o  metal l i n e r s  t h a t  were bol ted  t o  the 

Except 
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inner and outer  w a l l s  of t h e  combustor. 
ment t h i s  arrangement w a s  preferred over t he  individual ly  placed channels 
of reference 8. 

For ease of assembljr and a l ine -  

The f u e l  manifolds shown i n  f igures  3 and 4 are described i n  t h e  
discussion of combustor configurations.  Ign i t i on  w a s  provided by a con- 
ventional jet-engine spark plug with an extended shroud and electrode,  
mounted near the  junction of t h e  secondary channels and the  primary 
annulus. 

Instrument at ion 

The instrumentation s t a t i o n s  a r e  shown i n  f igu re  1. Combustor-inlet 
t o t a l  tem2erature and t o t a l  pressure were measured at s t a t i o n  1 w i t h  fou r  
bare-wire, chromel-alumel thermocouples and four  to ta l -pressure  tubes ,  
respect ively.  Combustor-outlet temperatures and pressures were measured 
at s t a t i o n  2 with a combined to ta l -pressure  and platinum-13-percent- 
rhodium - platinum thermocouple probe i n  a polar-coordinate t ravers ing  
mechanism. A de t a i l ed  descr ipt ion of t h i s  surveying method i s  given i n  
reference 9 .  
vey system continuously recorded o u t l e t  temperatures and to ta l -pressure  
d i f f e r e n t i a l  across  t h e  combustor. Stat ic-pressure t a p s  were a l so  l o -  
cated a t  s t a t ions  1 and 2. 

A two-pen X-Y recording potentiometer connected t o  the  sur- 

Combustor Configurations 

A t o t a l  of over 25 combustor configurations were invest igated.  
Cross-sectional views of t he  primary o r  secondary zones of the e ight  
most promising models a r e  shown i n  f igu res  5(a.) t o  (h) .  These e ight  
models a l l  had the  channeled-wall l i n e r  shown i n  figures 3 and 4. The 
fue l  manifolds f o r  these configurations consis ted of s ing le  or double 
concentric spray bars ,  perforated with 1/16- or 5/64-inch holes d r i l l e d  
as shown i n  f igures  5(a) t o  (h) . The small holes provided a moderate 
pressure drop and a uniform gas flow from a l l  t he  o r i f i c e s .  
time, t he  in j ec t ion  pressure drop w a s  low enough t o  allow the  f u e l  jets 
t o  break up and mix with air  before they penetrated an appreciable 
distance.  

A t  t he  same 

Model 1 ( f i g .  5(a)) w a s  t h e  simplest fuel-manifold configuration 
investigated.  
annular primary-zone w a - l l s ,  p l i ced  vithln s 3C-&e@ee V-gutter fiame- 
holder. 
zone cross-sect ional  area and created an eddy region f o r  f u e l - a i r  mixing 
a t  the f u e l  i n j ec to r .  
gut ter  combinations were used, instead of the  single manifold of model 1. 

It consis ted of a s ingle  f u e l  manifold concentric t o  t h e  

The V-gutter blocked approximately 70 percent of +,he primary- 

In  model 2 ( f ig .  5 (b) )  two fuel-manifold and V- 
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I n  t he  succeeding configurations, the  f u e l  manifolds were placed 
between two V-gutters with s l i g h t l y  d i f fe ren t  angulaz openings, displaced 
from one another longi tudinal ly  leaving narrow s l o t s  (usually 1/8 i n . )  
between the  two V-gutters from which the  fue l  flow emerged. More f u e l  
o r i f i c e s  were d r i l l e d  t o  increase the  over-al l  o r i f i c e  area and reduce 
t h e  average f u e l  ve loc i ty  out of t he  manifold. Model 3 ( f ig .  5 (c ) )  had 
a s ing le  f u e l  manifold within t h e  two V-gutters and metal s t r i p s  normal 
t o  t h e  air flow welded t o  t h e  upstream V-gutter t o  c rea te  addi t ional  t u r -  
bulence at the  f u e l  in jec tor .  
s t r i p s  but had two f u e l  manifolds within the  V-gutters. The manifolds 
were f l a t t e n e d  tubes tacked together along the f l a t t e n e d  s ides .  Thus, 
t he  s ing le  manifold of model 3 could be replaced by the  two manifolds. 
With separate f u e l  e n t r i e s  t o  the  two manifolds and ex terna l  valves ( f i g .  
Z ) ,  t he  d i s t r i b u t i o n  of fue l  t o  the  two manifolds could be control led as 
desired.  

Model 4 ( f ig .  5 (d) )  lacked these blocking 

Models 5 t o  8 were a l l  modiYications re ta in ing  t h e  dual-fuel-manifold 
and double-V-gutter configuration of model 4.  In  model 5 ( f ig .  5(e)), t he  
blocking s t r i p s  were r e ins t a l l ed ,  and a f i n e  screen w a s  placed over t he  
f u e l  o r i f i c e s  t o  break up the  f u e l  jets and promote a more uniform flow 
of gas out of the  s l o t s  between t h e  t r a i l i n g  edges of t he  two V-gutters. 
Model 6 ( f ig .  5(f)) had t h e  same blocking s t r i p s  as model 5, but these  
were extended t o  the  outer  combustor wall by three  radial tabs,  leaving 
three  r a d i a l  air  passages i n  the  outer  annulus ins tead  of the annular 
opening of model 5. 
ing t o  the  inner combustor w a l l ,  staggered with respect  t o  the  ex i s t ing  
tabs  i n  the  outer  annulus. The radial primary-air passages of models 6 
and 7 permitted more uniform r a d i a l  outlet-temperature p r o f i l e s  than the  
annular a i r  passages of models 3 and 5. Model 8 ( f ig .  5(h))  was iden t i -  
c a l  t o  model 7, except t h a t  a port ion of the openings jetween t h e  chan- 
ne ls  along t h e  inner radius  of t he  combustor l i n e r  was blocked by a 1-inch 
metal s t r i p  a s  a fur ther  aid t o  mixing within the  combustor. 

Model 7 ( f ig .  5 (g) )  had i n  addi t ion two t a b s  extend- 

PROCEDURE 

Range of Conditions 

Combustor performance w a s  evaluated over a range of f u e l - a i r  r a t i o s  
at the following conditions : 
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Air-flow 
rate, 

lb/sec 

I n l e t  -air 
t o t a l  
pressure, 
in .  Hg abs 

I n l e t  -air K e f  erence 
veloci ty ,  t o t a l  

temperature, f t / s e c  
a 

OF 

32.6 
14.7 
9.01 
5.65 

~~ 

4.815 
1.878 
1.172 

.754 

80 
80 
80 
80 

84.1 
72.6 
74.1 
75.1 

Simulated 
a l t i t ude ,  

f t  I 
53,500 
70,000 
80,000 

?Based on combustor maximum cross-sect ional  area of 0.73 
sq f t  (1/4-annulus) and combustor-inlet t o t a l  
conditions. 

Except f o r  temperature, these conditions represent present-day engines 
operating with annular combustors a t  a sea- leve l -s ta t ic  compressor t o t a l -  
pressure r a t i o  of 6.8 and a Mach number of 0.9. Combustor-inlet air  w a s  
a t  room temperature because of t he  d i f f i c u l t y  of operating the  preheater 
under low-pressure conditions.  Several of t he  configurations were oper- 
ated only at t h e  most severe i n l e t - a i r  t o t a l  pressure of 5.65 inches of 
mercury absolute.  
following addi t iona l  conditions: 

Combustor models 7 and 8 were a l s o  operated a t  t h e  

I n l e t  -air 
t o t a l  
pressure, 
i n .  Hg abs 

15 .O 
15.0 
15 .O 
46.0 
55.0 

A i r  -f low 
rate, 

lb/sec 

1 -90  
2.40 
2.97 
9.12 
9.12 

t o t a l  

The f irst  three  conditions were chosen t o  determine t h e  e f f ec t  of higher 
ve loc i t ies  at a subatmospheric pressure, and t h e  last  two simulated opera- 
t i o n  at f l i g h t  Mach numbers of approximately 3.0 at  an 80,000-foot a l t i -  
tude. 
preheater ( f ig .  1) t o  obtain higher i n l e t - a i r  temperatures. 
an i n l e t - a i r  temperature of 900° F, t h e  preheater reduced the  oxygen con- 
t e n t  of t he  i n l e t  air  from 2 1  t o  1 7  percent. 

Under these conditions, it w a s  possible t o  use the  d i r ec t - f i r ed  
To produce 

Calculations 

Combustion eff ic iency w a s  calculated as t h e  percentage r a t i o  of 
actual  t o  theo re t i ca l  increase i n  enthalpy from t h e  combustor-inlet in-  
strumentation plane t o  the  combustor-outlet t ravers ing  probe (s+-+’ uuurons 1 
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t o  2, f i g .  1) by using the  method of reference 6. 
t h a l p i e s  were determined from a chart  s i m i l a r  t o  t h a t  presented i n  r e f -  
erence 6, based upon a constant fue l - in l e t  temperature of 70' F. 
of 51,571 Btu per pound w a s  used f o r  the  lower heat of combustion of 
hydrogen. 

Combustor-inlet en- 

A value 

The reference ve loc i t i e s  w e r e  calculated from the  t o t a l  pressure and 
temperature at the  combustor-inlet instrumentation plane and t h e  maximum 
cross-sect ional  area of t he  combustor (0.73 sq f t ) .  

The combustor total-pressure drop w a s  determined by a d i r ec t  measure- 
ment of t h e  difference between the  t o t a l  pressure a t  t h e  combustor-inlet 
and -out le t  instrumentation planes. A t  low total-pressure leve ls ,  a w a t e r  
U-tube manometer w a s  used f o r  measurements; a t  higher to ta l -pressure  lev- 
e l s ,  t h e  pressure pickup of t h e  combustor-outlet survey system w a s  used 
t o  record the  to ta l -pressure  l o s s  d i r ec t ly  on t h e  combustor-outlet survey 
char t .  

RESULTS AND DISCUSSION 

A summary of the  r e s u l t s  of t he  performance of the  short  combustor 
with hydrogen f u e l  i s  given i n  t ab le  I. 

Preliminary Designs 

The e ight  combustor configurations presented i n  t h i s  report  were the  
most promising models out of a t o t a l  of 25 investigated and represent  suc- 
cessive s teps  i n  the design of a sa t i s fac tory  short  combustor. The design 
was based upon use of the  channeled-wall secondary zone. In  t h i s  construc- 
t i on ,  a i r  i s  admitted by means of long s lo ts ,  which f a c i l i t a t e  t h e  mixing 
i n  a r e l a t i v e l y  short  length of t he  hot combustion products with the  
cooler d i luent  air. 
providing a more durable l i n e r  construction t h a t  i s  reasonably f r e e  from 
warping when the  combustor is  operated a t  higher heat-release rates. 

I n  addition, t he  channeled design shows promise of 

An ear ly  design i n  t h i s  program used a combustor l i n e r  composed sole-  
l y  of the  secondary-zone channels. The f u e l  w a s  in jec ted  by means of s i m -  
p l e  spray bars. 
combustor encountered flame-out at  pressures below 9 inches of mercury 
absolute.  A she l te red  primary zone w a s  added t o  the  channeled l i n e r  t o  
provide a low-velocity region around the  f u e l  manifold. The most s u i t -  
able  primary l i n e r  consis ted of a so l id  basket, enclosing 20 percent of 
t he  annular cross-sect ional  a rea  and perforated with a row of holes i n  
t h e  inner w a l l  only. 
throughout t h i s  inves t iga t ion  with only minor modifications, while re- 
search w a s  conducted i n  an e f fo r t  t o  improve the  f u e l  manifold design. 

Even with t h e  highly reactive hydrogen, however, t h e  

This bas ic  combustor l i n e r  design w a s  re ta ined  
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In the  e igh t  combustor configurations presented i n  t h i s  report ,  t h e  f u e l  
manifold consisted of a combined fuel-spray bar and V-gutter flameholder. 
The V-gutters created eddy regions f o r  flame s tab i l iza t ion ;  and, since 
the combustor volume a l l o t t e d  t o  t h e  primary combustion zone w a s  r e l a t ive -  
l y  small, the  design of these flameholders w a s  found t o  be of prime i m -  
portance t o  combustor performance. 

Selection of B e s t  Configurations 

Combustion e f f ic ienc ies  of the  e ight  combustor models are compared 
i n  figure 6 at the severe operating conditions of an i n l e t - a i r  t o t a l  pres- 
sure of 5.7 inches of mercury absolute,  an i n l e t - a i r  t o t a l  temperature of 
80° F, a reference veloci ty  of 80 feet per second, and a f u e l - a i r  r a t i o  of 
0.0066. 
efficiency f o r  t h i s  configuration i s  shown at a f u e l - a i r  r a t i o  of 0.0085. 
For the  f i r s t  two configurations, eff ic iency w a s  better f o r  model 2, which 
had a greater r a d i a l  spread of f u e l  at the f u e l  i n j ec to r .  All the  suc- 
ceeding configurations employed the same bas ic  f lameholder design, con- 
s i s t i ng  of one V-gutter located inside another V-gutter. 
bustors, eff ic iency w a s  better with the models t h a t  had the blocking 
s t r i p s  and tabs on the upstream V-gutter (models 3, 5, 6, 7, and 8) .  
These blocking tabs and s t r i p s  created low-velocity r ec i r cu la t ion  zones 
in  their  wakes and provided flame seats f o r  those p a r t s  of the f u e l - a i r  
mixtures tha t  flowed upstream in to  these wakes. A l s o ,  the addi t iona l  
turbulence created by the blocking pieces  may have aided the f u e l  and air 
mixing i n  the primary zones and improved combustion eff ic iency.  

Because model 3 w a s  not operated at lower f u e l - a i r  r a t i o s ,  the  

For these com- 

The most uniform temperature p r o f i l e s  were obtained w i t h  those con- 
f igurat ions t ha t  had a dual f u e l  manifold, possibly because the use of 
the dual manifold resu l ted  i n  a more uniform flow of fue l  from a l l  t he  
fue l  o r i f i c e s .  This difference i s  qui te  evident i n  f igu re  7, where the  
radial outlet-temperature p r o f i l e  of a single-fuel-manifold combustor, 
model 3, is  compared with those of t h e  dual-fuel-manifold combustors 
(models 6, 7, and 8) operated with equal f u e l  flow t o  both manifolds. 
The abscissa  i n  th i s  figure represents  the  distance along a turb ine  ro to r  
blade posit ioned at t h e  combustor-outlet instrumentat ion plane from blade 
root (inner rad ius)  t o  t i p  (outer r ad ius ) .  The temperature points  are  
Circumferential averages a t  f i v e  r a d i a l  pos i t ions  taken from the survey- 
probe records; the method i s  i l l u s t r a t e d  i n  reference 9 .  The over-al l  
average combustor-outlet t o t a l  temperatures f o r  the  four  models i l l u s t r a -  
t e d  were not t he  same: ranging f r s m  1528O F for moGe1 3 t o  1226" F f o r  
model 6, but t h e  general  shape of t he  p r o f i l e s  i s  su f f i c i en t  for 
comparison. 

On the basis of these comparisons, t he  most sa t i s fac tory  performance 

Node1 6, nowever, w a s  
w i t h  respect t o  combustion e f f ic iency  and combustor-outlet r a d i a l  t e m -  
perature p ro f i l e  w a s  obtained w i t h  n d e l s  7' and 8.  
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used as a basis f o r  t h e  design of a fu l l - sca l e  annular combustor inves t i -  
gated a t  t h e  NACA L e w i s  laboratory,  r e s u l t s  of which are presented later 
i n  t h i s  repor t  f o r  comparisons with t h e  performance of t h e  quarter-annulus 
combustor. Models 7 and 8 were modifications invest igated i n  the  quarter-  
annulus i n s t a l l a t i o n  after the  fu l l - s ca l e  canbustor had been constructed j and operated. 

' a re  f o r  model 7 ,  because t h i s  combustor configuration w a s  invest igated 
, more extensively than w a s  model R .  Combustion e f f i c i enc ie s  of model 7 
, were s l i g h t l y  higher than those of model 6, and i n  turn,  e f f i c i enc ie s  of 
' model 8 were s l i g h t l y  h i -her  than those of model 7 ( t a b l e  I) .  

Most of the  performance results presented i n  t h i s  repor t  
I 

Performance of Best Models 

Combustion e f f ic iency .  - A p l o t  of t h e  combustion eff ic iency of models 
7 and 8 as a funct ion of f u e l - a i r  r a t i o  is  shown i n  figure 8 f o r  an i n l e t -  
air t o t a l  pressure of 5.7 inches of mercury absolute, a reference ve loc i ty  
of 80 feet  per  second, and an i n l e t - a i r  t o t a l  temperature of 80' I?. Lines 
of constant total-temperature rise across the combustor are a l so  shown i n  
t h i s  f igure ,  p lo t t ed  as a funct ion of combustion eff ic iency and fue l -a i r  
r a t i o .  It is  noted t h a t  the hydrogen fue l - a i r  r a t i o s  shown i n  figure 8 
are only about one-third of those required with conventional l i q u i d  hydro- 
carbon f u e l s  f o r  t h e  sme values of total-temperature rise. 

~ 

With increasing f u e l - a i r  r z t i o ,  combustion e f f ic iency  decreased 
s l i g h t l y ,  as shown i n  figure 8. A s i m i l a r  t rend w a s  a l s o  noted i n  a 
s tudy where hydrogen f u e l  w a s  t e s t e d  i n  production-type combustors (ref. 
6 ) .  The decrease i n  combustion eff ic iency w a s  a t t r i b u t e d  t o  overenrich- 
ment of t h e  primary zone, s ince the  production-type combustors were de- 
signed f o r  l i q u i d  hydrocarbon f u e l s  and were provided with a large,  
shielded primary zone and allowed a very gradual a i r  admission along the  
comSustor length.  The overenrichment w a s  corrected t o  a ce r t a in  extent  i n  
t he  experimental combustors f o r  hydrogen f u e l  by a short  primary zone and 
r ap id  introduct ion of secondary air beyondthe primary zone. : 

With the  dual-fuel-manifold configurations, models 4 t o  8, it w a s  
1 possible  t o  d i r e c t  more f u e l  toward the  outer or inner w a l l  of the  com- 

bustor  as desired.  
o u t l e t  temperature p ro f i l e s ,  but  assurance w a s  necessary t h a t  these manip- 
u l a t ions  could be made without a great sac r i f i ce  i n  eff ic iency.  Accord- 
ingly, t h e  e f f e c t  of f u e l  d i s t r ibu t ion  on combustion eff ic iency of models 
6 and 7 w a s  determined. The r e s u l t s  are shown i n  f igu re  9 at the  same 
severe operating conditions used i n  the  comparison of eff ic iency of t h e  
combustor configurations ( f ig .  6 ) .  The r e l a t ive  proportion of f u e l  t o  
t h e  inner and outer  spray bars  of t h e  dual f u e l  manifolds, based upon 

cause t h i s  configuration w a s  operated over a complete range of valve set- 

I 
I 

This arrangement w a s  intended f o r  control  of combustor- 

' 

I valve se t t i ngs ,  is  t h e  abscissa  f o r  t h i s  f igure .  Model 6 is  included be- 
I 
I t i ngs .  Although a balanced d i s t r ibu t ion  of f u e l  t o  both f u e l  manifolds 
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gives somewhat higkier e f f ic ienc ies ,  t h e  attainment of a prescribed o u t l e t -  
temperature p r o f i l e  i s  important enough t o  j u s t i f y  operation a t  other  f u e l  
d i s t r ibu t ions  a t  a s l i g h t  decrease i n  combustion e f f ic iency .  

Combustion eff ic iency of model 7 as a funct ion of f u e l - a i r  r a t i o  a t  
several  combustor-inlet pressures i s  shown i n  figure 10. For an i n l e t -  
a i r  t o t a l  pressure of 5.7 inches of mercury absolute,  combustion e f f i -  
ciency w a s  about 84 percent a t  f u e l - a i r  r a t i o s  of 0.0070 t o  0.0090, in-  
creasing at lower f u e l - a i r  r a t i o s  t o  92 percent at 0.0037. For a t o t a l  
pressure of 9.0 inches of mercury, e f f ic iency  increased from 90 percent 
at a f u e l - a i r  r a t i o  of 0.0083 t o  96 percent a t  0.0040. A t  higher pres-  
sures, combustion eff ic iency ranged between 95 and 100 percent, as shown 
by t h e  curve f o r  a pressure of 30 inches of mercury. 

The e f f e c t  of combustor reference veloci ty  on combustion e f f ic iency  
at a constant fue l - a i r  r a t i o  and combustor-inlet temperature i s  shown i n  
f igure  11. Combustion eff ic iency at reference v e l o c i t i e s  from 75 t o  155 
f e e t  per second i s  shown f o r  model 7 a t  pressures of 5 . 7  and 9 .0  inches 
of mercury absolute.  Additional da ta  are shown f o r  model 8 at reference 
ve loc i t i e s  of 230 t o  270 feet per second and a pressure l e v e l  of 47 t o  55 
inches of mercury (supersonic f l i g h t  conditions).  A t  a l l  these condi- 
t ions,  combustion eff ic iency w a s  v i r t u a l l y  independent of reference 
velocity . 

For a simulated f l i g h t  a l t i t u d e  of 80,000 f e e t  and an engine with a 
pressure r a t i o  of 4.2, t he  combustor-inlet conditions of temperature, 
pressure, and veloci ty  were r e l a t e d  t o  a f l i g h t  Mach number. 
t i o n  e f f i c i enc ie s  at these i n l e t  conditions are p lo t ted  as a funct ion of 
the calculated Mach number i n  figure 12 .  A s  Mach number increased at a 
given a l t i t ude ,  combustion e f f ic iency  approached a maximiurn,  p r inc ipa l ly  
because of the  increase i n  combustor-inlet pressure,  although temperature 
and veloci ty  a l s o  increased. 
f o r  an experimental channeled-wall combustor operated with l i q u i d  JP-type 
f u e l  (data from ref .  4, p. 45, based on r e f .  8 ) .  
operated e f f i c i e n t l y  with hydrogen a t  lower Mach numbers, or more unfavor- 
able i n l e t  conditions. 

The combus- 

The same t rend  i s  i l l u s t r a t e d  i n  f igu re  1 2  

The short  combustor 

The improvement i n  combustion e f f ic iency  with increase i n  combustor- 
i n l e t  pressure f o r  t he  experimental combustor i s  i n  accordance with t h e  
usual experience with turboje t  combustors, but the  performance with r e -  
spect t o  veloci ty  requires  some explanation. 
oxidation of t h e  f u e l  i s  assumed t o  be the  con t . rd l ing  s tep  I n  tne over- 
all cordxistion process, combustion eff ic iency has been cor re la ted  by the 
parameter pT/V (ref. lo), where p i s  combustor-inlet s t a t i c  pressure,  
T i s  combustor-inlet s t a t i c  temperature, and V i s  combustor reference 
veloci ty .  
over a complete range of a l l  these conditions,  nevertheless it i s  evident 
t h a t  t h e  cor re la t ion  does not apply with respect  t o  velocity,  since 

For combustors where t h e  

Although the  short  hydrogen-fuel combustor w a s  not operated 
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ef f ic iency  did not decrease with increasing velocity ( f ig .  11) . 
which has a low ac t iva t ion  energy and high flame speed, apparently has 
su f f i c i en t  residence t i m e  t o  complete the  oxidation and flame-propagation 
phases of t h e  combustion process even i n  t h i s  short  combustor at high 
ve loc i t i e s .  
the propagation of t he  flame through t h i s  mixture are t h e  rate-control l ing 
mechanisms i n  the  combustor. Some evidence f o r  t h i s  hypothesis i s  given 
by t h e  increased e f f i c i enc ie s  at l o w  pressure with model 8 ( f ig .  8), where 
t h e  change i n  the  secondary-zone openings (fig.  5(h)) probably caused a 
r ed i s t r ibu t ion  of a i r  t o  the  primary zone with increased mixing i n  that 
zone. However, if t h e  combustor length i s  fur ther  reduced, or if the  flow 
veloci ty  i s  fu r the r  increased, a condition may eventually be reached where 
t h e  fuel-air residence t i m e  i n  t h e  combustor i s  so short  t h a t  t h e  chemical 
reac t ion  may have insuf f ic ien t  time t o  go t o  completion, even with hydro- 
gen f u e l .  A t  such a condition, an adverse e f f ec t  on eff ic iency would be 
expected when veloci ty  i s  increased. For the combustor described i n  this  
report ,  t h i s  point i s  apparently not reached f o r  ve loc i t i e s  as high as 
270 feet  per second. 

Hydrogen, 

It i s  more l i ke ly  t h a t  t h e  mixing of t h e  f u e l  and air and 

Combustor-outlet total-temperature prof i les .  - An example of t h e  
radial-temperature-profile control  possible through var ia t ion  i n  t h e  pro- 
portioning of f u e l  t o  t h e  dual manifold i s  i l l u s t r a t e d  i n  f igure  13, where 
combustor-outlet total-temperature prof i les  are shown f o r  model 6 at an 
over-al l  average ou t l e t  t o t a l  temperature of about llOOo F. A s  t h e  f u e l  
d i s t r ibu t ion  w a s  sh i f ted  from the  outer t o  t h e  inner manifold, t he  peak 
temperatures i n  t h e  o u t l e t  p ro f i l e  sh i f ted  from t h e  outer  radius toward 
t h e  inner radius.  Thus, by appropriate control of t h e  f u e l  flow t o  t h e  
manif old, a desired t y p e  of outlet-radial-temperature p ro f i l e  could be 
obtained. A s  shown i n  f igu re  9, these fue l -d is t r ibu t ion  manipulations 
have a slight effect on the  combustion efficiency. 

The same radial-temperature p r o f i l e  control w a s  obtainable with the 
optimum confi;2urations, models 7 and 8 ,  although they were not operated 
over as complete a range of fuel-flow d is t r ibu t ions  as model 6. 
r a d i a l  temperature d i s t r ibu t ion  shown i n  f i t x r e  14  is typ ica l  of those 
obtained f o r  model 7 .  This prof i le  is  the  r e s u l t  of a f u e l  d i s t r ibu t ion  
of about 80 percent t o  the outer manifold, and it shows a reasonable 
spread of 250' F a t  an average ou t l e t  t o t a l  temperature of 1445' F. 

The 

Combustor total-pressure l o s s .  - The channeled-wall design charac- 
t e r i s t i c a l l y  has a low total -pressure loss (ref. 8), bu t  a s l i g h t  in- 
crease i n  pressure loss had t o  be suffered i n  order t o  gain t h e  bene f i t s  
of t he  eddy-promoting blocking tabs  i n  models 7 and 8. 
loss, i n  percent of combustor-inlet t o t a l  pressure, is  p lo t t ed  f o r  these 
models i n  f igu re  15 as a function of combustor total-temperature r a t i o .  
Data. were taken at i n l e t - a i r  t o t a l  pressures from 5.7 t o  30 inches of 
mercury absolute and a reference velocity of about 80 feet per second. 

The to ta l -pressure  
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Because of t h e  d i f f i c u l t y  i n  making prec ise  pressure-difference measure- 
ments a t  the  low to ta l -pressure  leve ls ,  t he re  i s  considerable s c a t t e r  i n  
t h e  data.  Pressure loss  var ied  from approximately 3.0 percent at a t o t a l -  
temperature r a t i o  of 1 .0  (isothermal conditions) t o  4.7 percent at a t e m -  
perature r a t i o  of 3.6. 
f a i r ed  curve i s  fo r tu i tous .  

Agreement of t h e  data poin ts  f o r  model 8 and t h e  

Comparison with F u l l  - Sc ale Combust or  

Design of combustor. - Combustor model 6, and later models 7 and 8, 
were used as bases f o r  t he  design of a f u l l - s c a l e  annular combustor f o r  
hydrogen f u e l .  
engine i n  the  8000-pound-thrust c lass .  
using ex i s t ing  quarter-annulus ducting, the  combustor w a s  f i rs t  inves t i -  
gated i n  the  i n s t a l l a t i o n  described i n  this repor t ,  even though the  dimen- 
sions of the  sector  did not correspond t o  those required f o r  t h e  f u l l - s c a l e  
engine. 
l a rger  annulus but a l so  an annulus having a l a rge r  mean radius .  
channeled-wall type of design, however, l e n t  i t s e l f  pa r t i cu la r ly  w e l l  t o  
t h i s  scaling. 
length of the  production-type combustor it replaced, but it had t o  occupy 
t h e  standard combustor housing i n  the engine. Thus while the downstream 
end of the combustor f i t  against  the turbine-nozzle diaphragm, there  w a s  
an  unoccupied gap between the upstream end of the combustor and the com- 
pressor o u t l e t .  
modate the requirements of the shortened combustor l i n e r .  

This combustor w a s  f i t t e d  i n t o  a current,  production-type 
Because of t h e  convenience of 

It w a s  thus necessary t o  sca le  t h e  combustor t o  f i t  not only a 
The 

The shortened combustor w a s  approximately two-thirds the  

Fuel- l ine and spark-plug e n t r i e s  were modified t o  accom- 

Photographs of the  fu l l - s ca l e  combustor a r e  shown i n  f igure  16. The 
pictures  were taken looking upstream from t h e  turbine-nozzle diaphragm. 
The enlarged view, f igu re  16  (a), shows the  downstream V-gutter of t h e  
flameholder and the  s l o t  between the  V-gutters from which the  f u e l  emerges. 
The inner- and outer-radius channels, connecting s t r u t s ,  inner l i n e r ,  and 
the  downstream heat sh i e ld  can also be seen. 

Combustion efficiency. - Combustion e f f ic iency  of t he  quarter-annulus 
models agreed with those obtained i n  the f u l l - s c a l e  engine within 5 percent 
at a l l  conditions.  

Combustor-outlet total-temperature p ro f i l e .  - Normally engine tes t  
in s t a l l a t ions  carry temperature instrumentation only at the  turb ine-out le t  
plane, and radial total-temperature d-istrtbut iccs a r e  spz-clf l e d  f o r  tnis 
s t a t ion .  A t y p i c a l  total-temperature d i s t r ibu t ion  a t  t h e  turb ine  o u t l e t  
f o r  t h e  short  combustor i n  the f u l l - s c a l e  enf-ine i s  shown ii: f i gu re  1 7 .  
This d i s t r ibu t ion ,  having a moderate peak near t h e  blade t i p ,  w a s  con- 
sidered acceptable f o r  t h i s  engine. It w a s  obtained, however, only when 
a l l  of the f u e l  w a s  in jec ted  through the  inner manifold of t h e  dual f u e l  
manifold. Since t h i s  engine a l s o  car r ied  tercperzture instrument a t  ion a t  
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t h e  combustor ou t l e t ,  the  temperature d i s t r ibu t ions  upstream of the  tur- 
bine could a l s o  be studied. 
from t h e  inner  manifold only, t h e  r a d i a l  temperature d i s t r i b u t i o n  at  t h e  
combustor o u t l e t  had a high peak near t h e  blade roo t .  
temperature d i s t r ibu t ion  has some resemblance t o  t h a t  exhibi ted by the 
corresponding quarter-annulus -duct combus t o r  (model 6)  when operated i n  
the same manner, as shown by the broken l i n e  i n  f i g u r e  1 7 .  

A s  would be expected, with f'uel in j ec t ed  

This r a d i a l -  

It is  thus  noted, from these s tud ies  with an engine instrumented at 
both the turb ine  i n l e t  and ou t l e t ,  that the r a d i a l  total-temperature 
d i s t r i b u t i o n  i n t o  the turb ine  i s  consis tent  with that obtained a t  the 
combustor o u t l e t  of the quarter-annulus duct model. On the other  hand, 
the temperature d i s t r ibu t ion  i n t o  the  turbine is almost the inverse 
of the  d i s t r i b u t i o n  out of t h e  turbine,  o r  the des i red  d i s t r ibu t ion .  
t h i s  observation i s  t y p i c a l  f o r  m a n y  engines, the  p rac t i ce  of using 
turb ine-out le t  p r o f i l e s  f o r  design purposes may be misleading. The s h i f t  
i n  temperature d i s t r ibu t ion  through t h e  turbine has been noted i n  previ-  
ous s tudies  (ref. ll), and it may be the r e su l t  of f low-pattern changes 
through the r o t o r  and s t a t o r  passages and the  discharge of turbine-disk 
cooling air i n t o  the exhaust gases. 

E 

Combustor to ta l -pressure  loss.  - Combustor to ta l -pressure  loss, i n  
percent of combustor-inlet t o t a l  pressure,  i s  p l o t t e d  i n  figure 18 as a 
funct ion of the engine total-temperature r a t i o .  
corrected engine speeds of 100 and 96 percent of r a t e d  speed a t  a Reynolds 
number index of 0.08, conditions simulating those at  about a 71,000-foot 
a l t i t u d e  at Mach 0.9. A curve representing the to ta l -pressure  loss  of the 
quarter-annulus combustor, as a funct ion of combustor total-temperature 
r a t i o  ( f ig .  15), is  included i n  figure 18. 
are comparable. 

Points  are shown f o r  

The measured pressure lo s ses  

SUMMARY OF RESULTS 

The following r e s u l t s  were obtained from an inves t iga t ion  of a shor t  
channeled-wall combustor f o r  hydrogen f u e l  i n  a quarter-annulus duct and 
from a comparison w i t h  t h e  performance of a corresponding full-annulus 
combustor i n  a current ,  production-type turboje t  engine: 

1. Sat i s fac tory  performance at low pressures was  achieved w i t h  a 
combustor l i n e r  cons is t ing  of a she l te red  primary zone occupying about 
20 percent of t h e  cross-sect ional  area and a channeled-wall secondary 
zone. The best fuel-manifold design consisted of concentric spray ba r s  
s i t u a t e d  between two V-gutter flameholders t ha t  w e r e  displaced longitud- 
i n a l l y  so that  the f u e l  issued from the  annular s l o t s  between the trail-  
ing edges of t h e  V-gutters. 
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2 .  Combustion eff ic iency f o r  t h e  best configuration a t  f u e l - a i r  
r a t i o s  of 0.007 t o  0.009 ranged from 84 percent a t  a combustor-inlet 
t o t a l  pressure of 5 . 7  inches of mercury absolute through 90 percent at 
9.0 inches of mercury absolute t o  values approaching 100 percent a t  higher 
pressures. 
efficiency a t  a l l  pressures over a ve loc i ty  range of 75 t o  270 f e e t  per 
second; t he  higher ve loc i t i e s  were a t t a ined  a t  pressures of 47 t o  55 
inches of mercury absolute, conditions simulating supersonic f l i g h t  
opera t  ion.  

Combustor reference ve loc i ty  had l i t t l e  e f f ec t  on combustion 

3 .  By proportioning the  f u e l  flow t o  t h e  two manifolds of t h e  dual 
f u e l  manifold, sa t i s fac tory  control  of t he  combustor-outlet r a d i a l -  
temperature d i s t r ibu t ion  w a s  achieved. 

4. Combustor to ta l -pressure  loss ranged from 3.0 percent a t  isotherm- 
a l  conditions t o  4.7 percent a t  a combustor total-temperature r a t i o  of 
3.6. 

5. The full-annulus combustor t h a t  w a s  scaled from the  quarter-  
annulus duct models t o  f i t  a current,  production-type annular tu rboje t  
engine operated a t  combustion e f f i c i enc ie s  and total-pressure losses 
s i m i l a r  t o  those determined f o r  t h e  duct model. By means of the f u e l  
d i s t r ibu t ion  control,  turbine-out le t  total-temperature d i s t r ibu t ions  i n  
the engine were adjusted u n t i l  an acceptable p r o f i l e  w a s  obtained, with- 
out any a l t e r a t i o n  t o  t h e  combustor l i n e r .  
combustor w a s  approximately two-thirds of t h a t  of t he  production model. 

The length of the  experimental 

L e w i s  F l igh t  Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, Apri l  1 7 ,  1956 
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Primary-zone annulus 
outer  w a l l  
V-gutter flameholder 

I 
3.38 

- 

I 

38 Equally spaced 
5164- diameter f u e l  
o r i f  i ces  

1116-diameter f u e l  
o r i f  i ce s  

w a l l  tubing 

-38 Equally spaced 

-112" 0 .  D., 0.06" 

Primary-zone annulus /- inner w a l l  
I 0.f25 

(a )  Model 1. Longitudinal c ross  sec t ion  
through primary zone. 

f lameholder 

144 Equally spaced 1116- 
diameter f u e l  o r i f i c e s  
i n  two rows 0.625 A 

( c )  Model 3. Longitudinal c ross  sec t ion  through 
primary zone. 

0.438 

26 Equally spaced 1/16-diameter 
f u e l  o r i f i c e s  in two rows 

0.438 

t) Model 2. Longitudinal c ross  sec t ion  
through primary zone. 

144 Equally spaced 1116- 
diameter f u e l  o r i f i c e s  

f-112 0 .  D. tubing 
f l a t t ened  

(d )  Model 4.  Longitudinal c ross  sec t ion  through 
primary zone. 

L 
.375 

625 

i ne  screen 

,- 

( e )  Model 5 .  Longitudinal c ross  sec t ion  through 
primary zone. 

( A l l  dimensions i n  inches.) 
Figure 5. - Sketches of manifolds and l i n e r s  of combustor models 1 t o  8. 
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A t - '  

0.375 
7 1  Section A-A 

0.625 

t 
( f )  Model 6. Upstream end view and longitudinal 
cross section through primary zone. 

Section B-B 

(g) Model 7. Upstream end view and longitudinal 
cross section through primary zone. 

Heat shield 

(h) Model 8. Longitudinal cross section through 
inner wall of secondary zone. 

Figure 5. - Concluded. Sketches of manifolds and liners of combustor models 1 to 8. 
( A l l  dimensions in inches. ) 
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Figure 7. - Comparison of r ad ia l  temperature dis t r ibut ion a t  
combustor-exhaust plane f o r  selected models. 
t o t a l  pressure, 5.7 inches of mercury absolute; in le t -a i r  
temperature, 800 F; reference velocity, 80 f e e t  per second; 
fuel-air  r a t io ,  0.007 t o  0.008; models 6, 7, and 8 operated 
with equal fue l  distribution t o  both manifolds. 
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Fuel-air r a t i o  

Figure 10. - Combustion efficiency of model 7 a t  several pressures. Inlet-ai r  t o t a l  
temperature, 8 8  F; reference velocity, 80 fee t  per second. 

Figure 11. - EfYect of reference velocity on combustion efficiency of models 7 and 8. 
Inlet-air  t o t a l  temperature, 86' Fj fuel-air  ra t ios ,  0.0067 t o  0.0070, except a8 
noted. 
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Outer manifold open 

A - - -  Inner manifold open 
n - - -  Both manifolds open 
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Figure 13. - Effect of fuel distribution to dual fuel mani- 
fold on outlet radial total-temperature profile for model 
6. Inlet-air total pressure, 5.7 inches of mercury abso- 
lute; inlet-air total temperature, 80' F; reference veloc- 
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Figure 14. - Outlet r ad ia l  total-temperature prof i le  fo r  f i n a l  
configuration, model 7. 
of mercury absolute; inlet-ai r  t o t a l  temperature, 800 F; 
reference velocity, 80 f ee t  per second; fuel-air  r a t io ,  
0.0089; average out le t  t o t a l  temperature, 1445' F; fuel-  
flow distribution, 80 percent t o  outer manifold. 

Inlet-air  t o t a l  pressure, 5.7 inches 
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